
5.4.7 Recipe for the Deadtime Correction 

For reference here is equation (5.2) 
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where dsd PPP 111 −=∆  is the difference in 1P  coefficients, obtained by fitting power 

spectrum of the simulated data and the calibration data, respectively, and dsd PPP 222 −=∆  

is the difference in 2P  coefficients.  

Incident Rate Correction 

In the absence of the background, for the on-ground calibration data, the incident rate can 

be calculated from the observed rate using                               
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where 0τ =16.383±0.004 µs is detector 0 deadtime. This is a formula for non-extended 

deadtime, and it is applicable since the deadtime Monte Carlo model assumes             

non-extended deadtime with the same time events that do not change the counting rate. 

For the purpose of the rate correction, the accuracy of the model is sufficient. 

In the case of USA operation in orbit, when background rates become significant, the 

formula for the rate correction should take into account those rates. In this case, the 

incident rate can be estimated as                                     
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where DTF  is a dead time fraction        

                             LELEshotonecicpo rrrrDTF ττττ +++= −log0 ,                     (5.6)         

where pr  is perimeter veto rate, iclogτ =7.5±1 µs is perimeter veto deadtime, cr  is total 

coincidence veto rate, shotone−τ  is a deadtime caused by coincidence events ( shotone−τ  is 

on average 15.6 µs, see Section 5.1.1.) , LEr  is large energy events rate, and LEτ  is a 

deadtime caused by these events ( LEτ  varies with the energy of the event, see Section 

5.1.1.). This formula is true if all the incident events are independent and can be applied 

only to the sources with less than 10% deadtime [108]. This formula should be verified 

by the analysis of the on-orbit calibration data. Note that the value of LEr  is not available 

and has to be estimated. 

Power Spectrum Correction 

In this section we discuss how the power spectrum of a source can be corrected for the 

noise, based on the findings of the previous sections. The relevant theory is discussed in 

Section 4.2.3.  

It is likely that the power spectrum of the on-orbit calibration data will be different from 

the power spectrum of the on-ground calibration data. The methods described in this 

section are useful for the comparison of the on-ground calibration data to the on-orbit 

calibration data. Section 5.6 describes what calibration needs to be done on-orbit. Similar 

correction methods need to be developed based on the on-orbit calibration data analysis. 

The corrections discussed in this section ignore the energy-dependent instrumental effect, 

and should be applied when the effect is insignificant. The correction methods of this 

section lay out the basis for the final correction method that considers the energy-

dependent effect (Section 5.5). 



The most accurate method one can use to correct the source power spectrum for noise is 

to subtract the same average rate calibration data power spectrum, which is defined by 

coefficients kP . Section 5.4.3 discusses how the power spectrum of the calibration data is 

described by the set of coefficients kP . Despite the accuracy, this method has a very 

limited application. Since the power spectrum depends on the bin size, the method is not 

convenient to use for a different binning than the one used in the table 5.3 (Although raw 

calibration data is available and can be binned as desired). The power spectrum is also 

rate-dependent. We only have on-ground calibration data for five different rates for 

detector 0, and for only two of these is the amount of data large (4075 Hz and 4030 Hz). 

It is unclear how to interpolate these results for other rates without losing accuracy. Thus, 

this method can only be used for rates close to the rates of the calibration data. This 

method is very useful for the comparison of the on-ground calibration data to the on-orbit 

calibration data with the same rates. Two coefficients are sufficient when the bin size is 

greater than or equal to the deadtime. Table A.1 provides the values of 1P  and 2P  for 

several values of bt  and available values of or .  

The most general way to correct the power spectrum is to use the Monte Carlo model of 

Section 5.4.1. The model can be used for the Monte Carlo simulation of the Poisson noise 

power spectrum and subsequent subtraction from the power spectrum of the data (the 

simulation and the data should have the same average rate). It can also be used for the 

simulation of the celestial X-ray source timing behavior and comparison with the 

observed power spectrum of the source. The advantage of the model is that it can be used 



for any rate less than 4100 Hz and for any binning. (At rates higher than 4100 Hz it is 

unclear by how much the model deviates from the data). The deviations of the deadtime 

 

Figure 5.29 a) Parabolic fit to the coefficients 1P  for the simulated data. The error bars are 
omitted, since they are smaller than the size of the data points. b) Residuals of the fit.      

=bt 96 µs. The deadtime used in the simulation at all rates is the detector 0 deadtime. 

 

 



model from the data can be estimated for various rates and values of bt  (see Section 

5.4.6). For some specific parameters, these deviations are known exactly. Table A.3 lists 

the values of 1P  and 2P  for the simulated data power spectrum for some specific 

parameters. Combining information from Table A.2 and Table A.3, we can obtain the 

value of function (5.3), which describes the deviations for these parameters. Even in the 

situations when we need to know the power spectrum with an accuracy better that the 

model can provide, we should keep in mind that the deviations of the model from the data 

have specific functional form (5.3) that can be distinguished from physical phenomena, 

for example QPOs. 

The use of the model requires Monte Carlo simulation of a sufficient number of events. 

For convenience, we interpolated the kP  coefficients of simulated data for various rates 

and binning with a parabola. Figure 5.29 shows the parabolic least squares fit to the 1P  

values and the residuals of the fit in the 0-4100 Hz rates range. Figure 5.30 shows the 

parabolic least squares fit to the 2P  values and the residuals of the fit in the same range. 

Table 5.6 and Table 5.7 list the results of the fits for various binning. The values in the 

table 5.6 and table 5.7 can be used to calculate 1P , 2P , and the noise power spectrum 

according to (5.2). The deviations of the values of kP  obtained by the interpolation from 

the ones describing the model are much smaller than the deviations of the model from the 

data (see figure 5.29b).    

For low rate sources, a convenient method to describe the power spectrum of the noise is 

to use the analytical formula for extended deadtime 
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Figure 5.30 a) Parabolic fit to the coefficients 2P  for the simulated data. The error bars are 
omitted, since they are smaller than the size of the data points. b) Residuals of the fit.      

=bt 96 µs. The deadtime used in the simulation at all rates is the detector 0 deadtime. 

 

 

 



bt  (µs) A b c /2χ dof 

32 (2.20±0.02)× 1010−  (-4.6432±0.0005)× 510−  2.00002±0.00001  0.281 

96 (3.7±0.1)× 1010−  (-5.886±0.003)× 510−  1.99977±0.00004  2.048 

960 (5.2±0.4)× 1010−  (-6.497±0.009)× 510−  2.0000±0.0001  0.703 

Table 5.6 Results of the parabolic fit. cbrarP oo ++= 2
1 . 13 dof. 

bt  (µs) a b c /2χ dof 

32 (3.10±0.03)× 1010−  (-1.9090±0.0008)× 510−  (-4.±2.)× 510−  0.663 

96 (1.9±0.2)× 1010−  (-6.70±0.04)× 610−  (2.6±0.6)× 410−  0.184 

960 (8.±5.)× 1110−  (-1.0±0.1)× 810−  (2.±2.)× 410−  0.684 

Table 5.7 Results of the parabolic fit.  cbrarP oo ++= 2
2 . 13 dof. 

This formula is convenient to use, because the power spectrum can be calculated for any 

value of rate and bin size. However, generally, this method is much less accurate than the 

methods described above. Figure 5.31 shows the difference between the kP  coefficients 

for the model and the ones calculated using (5.7) with =bt 96 µs. At low rates, the 

discrepancy between the model and the system with extended deadtime decreases. For 

rates below ~500 Hz, the discrepancy between the power spectrum described by (5.7) and 

the power spectrum of the simulated data is the same as between the power spectrum of 

the simulated data and the calibration data. We recommend using the extended deadtime 

formula for low rates if the accuracy is sufficient. 



 

 

 

Figure 5.31 a) extendedPP 11 −  coefficients. Points with error bars correspond to the simulated data. 

b) extendedPP 22 −  coefficients. =bt 96 µs. The deadtime used in the simulation at all rates is the 

detector 0 deadtime. 


